Information

Why do arteries have a small lumen?

Why do arteries have a small lumen?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

My biology textbook says that arteries have a small lumen relative to the thickness of their walls. I understand why they need thick walls, to withstand high pressure and stretch etc. But when explaining the reason for the "small" lumen, it says that it is to "maintain the high pressure". I'm not quite sure what this means.

What would happen if the lumen was larger? Wouldn't a small lumen create resistance to blood flow? And what exactly is blood pressure? Also, it says that veins have a "large" lumen. Why is this so? I think my confusion is a lack of understanding of what blood pressure really means. Why does velocity not seem to make a difference?


Why do arteries have a small lumen? - Biology

Figure 1. While most blood vessels are located deep from the surface and are not visible, the superficial veins of the upper limb provide an indication of the extent, prominence, and importance of these structures to the body. (credit: Colin Davis)

In this chapter, you will learn about the vascular part of the cardiovascular system, that is, the vessels that transport blood throughout the body and provide the physical site where gases, nutrients, and other substances are exchanged with body cells. When vessel functioning is reduced, blood-borne substances do not circulate effectively throughout the body. As a result, tissue injury occurs, metabolism is impaired, and the functions of every bodily system are threatened.

Blood is carried through the body via blood vessels. An artery is a blood vessel that carries blood away from the heart, where it branches into ever-smaller vessels. Eventually, the smallest arteries, vessels called arterioles, further branch into tiny capillaries, where nutrients and wastes are exchanged, and then combine with other vessels that exit capillaries to form venules, small blood vessels that carry blood to a vein, a larger blood vessel that returns blood to the heart.

Arteries and veins transport blood in two distinct circuits: the systemic circuit and the pulmonary circuit. Systemic arteries provide blood rich in oxygen to the body’s tissues. The blood returned to the heart through systemic veins has less oxygen, since much of the oxygen carried by the arteries has been delivered to the cells. In contrast, in the pulmonary circuit, arteries carry blood low in oxygen exclusively to the lungs for gas exchange. Pulmonary veins then return freshly oxygenated blood from the lungs to the heart to be pumped back out into systemic circulation. Although arteries and veins differ structurally and functionally, they share certain features.

Figure 1. The pulmonary circuit moves blood from the right side of the heart to the lungs and back to the heart. The systemic circuit moves blood from the left side of the heart to the head and body and returns it to the right side of the heart to repeat the cycle. The arrows indicate the direction of blood flow, and the colors show the relative levels of oxygen concentration.


Blood Vessels

Figure 1. The major human arteries and veins are shown. (credit: modification of work by Mariana Ruiz Villareal)

The blood from the heart is carried through the body by a complex network of blood vessels (Figure 1). Arteries take blood away from the heart. The main artery is the aorta that branches into major arteries that take blood to different limbs and organs. These major arteries include the carotid artery that takes blood to the brain, the brachial arteries that take blood to the arms, and the thoracic artery that takes blood to the thorax and then into the hepatic, renal, and gastric arteries for the liver, kidney, and stomach, respectively. The iliac artery takes blood to the lower limbs. The major arteries diverge into minor arteries, and then smaller vessels called arterioles, to reach more deeply into the muscles and organs of the body.

Arterioles diverge into capillary beds. Capillary beds contain a large number (10 to 100) of capillaries that branch among the cells and tissues of the body. Capillaries are narrow-diameter tubes that can fit red blood cells through in single file and are the sites for the exchange of nutrients, waste, and oxygen with tissues at the cellular level. Fluid also crosses into the interstitial space from the capillaries. The capillaries converge again into venules that connect to minor veins that finally connect to major veins that take blood high in carbon dioxide back to the heart. Veins are blood vessels that bring blood back to the heart. The major veins drain blood from the same organs and limbs that the major arteries supply. Fluid is also brought back to the heart via the lymphatic system.

The structure of the different types of blood vessels reflects their function or layers. There are three distinct layers, or tunics, that form the walls of blood vessels (Figure 2). The first tunic is a smooth, inner lining of endothelial cells that are in contact with the red blood cells. The endothelial tunic is continuous with the endocardium of the heart. In capillaries, this single layer of cells is the location of diffusion of oxygen and carbon dioxide between the endothelial cells and red blood cells, as well as the exchange site via endocytosis and exocytosis. The movement of materials at the site of capillaries is regulated by vasoconstriction, narrowing of the blood vessels, and vasodilation, widening of the blood vessels this is important in the overall regulation of blood pressure.

Figure 2. Arteries and veins consist of three layers: an outer tunica externa, a middle tunica media, and an inner tunica intima. Capillaries consist of a single layer of epithelial cells, the tunica intima. (credit: modification of work by NCI, NIH)

Veins and arteries both have two further tunics that surround the endothelium: the middle tunic is composed of smooth muscle and the outermost layer is connective tissue (collagen and elastic fibers). The elastic connective tissue stretches and supports the blood vessels, and the smooth muscle layer helps regulate blood flow by altering vascular resistance through vasoconstriction and vasodilation. The arteries have thicker smooth muscle and connective tissue than the veins to accommodate the higher pressure and speed of freshly pumped blood. The veins are thinner walled as the pressure and rate of flow are much lower. In addition, veins are structurally different than arteries in that veins have valves to prevent the backflow of blood. Because veins have to work against gravity to get blood back to the heart, contraction of skeletal muscle assists with the flow of blood back to the heart.


Lesson Worksheet: Blood Vessels Biology

In this worksheet, we will practice describing the structures and functions of the major blood vessels in the human circulatory system.

Why is it important for capillaries to have thin, permeable walls?

  • A To allow them to carry blood at a high pressure
  • B To increase the rate of blood flow
  • C To allow substances to diffuse into and out of cells
  • D To prevent the backflow of blood in the vessels
  • E To provide capillaries with the flexibility to move around cells

Which of the following correctly compares veins and arteries?

  • A Both arteries and veins have thick muscular walls to carry blood at high pressure.
  • B The majority of both arteries and veins contain valves to prevent the backflow of blood.
  • C Veins have a muscular wall to carry blood at high pressure, and arteries have valves to prevent the backflow of blood.
  • D Arteries have a muscular wall to carry blood at high pressure, and veins have valves to prevent the backflow of blood.

What happens to the blood when it is taken to the lungs?

  • A It becomes oxygenated.
  • B It becomes deoxygenated.
  • C It absorbs glucose.
  • D It releases glucose.

Which of the major blood vessels carries blood back into the heart?

Why do arteries have thick, muscular walls containing elastic fibers?

  • A To prevent oxygen from being lost from the blood
  • B To prevent the backflow of blood
  • C To help them carry blood at low pressure
  • D To allow the transport of substances to other cells
  • E To help them carry blood at high pressure

Why do veins often contain valves?

  • A To keep blood moving against the concentration gradient
  • B To keep blood moving at a high pressure
  • C To ensure that blood is able to clot properly
  • D To prevent the backflow of blood
  • E To prevent blood from becoming deoxygenated

Which of the major blood vessels carry blood from the heart to the lungs or the body?

What type of blood vessels surround and deliver blood to body cells, tissues, and alveoli?

Complete the table to correctly compare the structure of the three major blood vessels.

StructureVeinArteryCapillary
Width of WallThin1Single layer of cells
Size of Lumen2SmallVery small
Valves Present3No4
  • A 1: Thick, 2: Small, 3: No, 4: No
  • B 1: Thin, 2: Small, 3: Yes, 4: No
  • C 1: Thick, 2: Large, 3: Yes, 4: No
  • D 1: Thick, 2: Large, 3: No, 4: Yes
  • E 1: Thin, 2: Large, 3: Yes, 4: Yes

The diagram provided shows the structure of an artery. Which of the following best describes its structure?


Contents

The anatomy of arteries can be separated into gross anatomy, at the macroscopic level, and microanatomy, which must be studied with a microscope. The arterial system of the human body is divided into systemic arteries, carrying blood from the heart to the whole body, and pulmonary arteries, carrying deoxygenated blood from the heart to the lungs.

The outermost layer of an artery (or vein) is known as the tunica externa, also known as tunica adventitia, and is composed of collagen fibers and elastic tissue - with the largest arteries containing vasa vasorum (small blood vessels that supply large blood vessels). [2] Most of the layers have a clear boundary between them, however the tunica externa has a boundary that is ill-defined. Normally its boundary is considered when it meets or touches the connective tissue. [3] Inside this layer is the tunica media, or media, which is made up of smooth muscle cells, elastic tissue (also called connective tissue proper) and collagen fibres. [2] The innermost layer, which is in direct contact with the flow of blood, is the tunica intima, commonly called the intima. The elastic tissue allows the artery to bend and fit through places in the body. This layer is mainly made up of endothelial cells (and a supporting layer of elastin rich collagen in elastic arteries). The hollow internal cavity in which the blood flows is called the lumen.

Development Edit

Arterial formation begins and ends when endothelial cells begin to express arterial specific genes, such as ephrin B2. [4]

Arteries form part of the circulatory system. They carry blood that is oxygenated after it has been pumped from the heart. Coronary arteries also aid the heart in pumping blood by sending oxygenated blood to the heart, allowing the muscles to function. Arteries carry oxygenated blood away from the heart to the tissues, except for pulmonary arteries, which carry blood to the lungs for oxygenation (usually veins carry deoxygenated blood to the heart but the pulmonary veins carry oxygenated blood as well). [5] There are two types of unique arteries. The pulmonary artery carries blood from the heart to the lungs, where it receives oxygen. It is unique because the blood in it is not "oxygenated", as it has not yet passed through the lungs. The other unique artery is the umbilical artery, which carries deoxygenated blood from a fetus to its mother.

Arteries have a blood pressure higher than other parts of the circulatory system. The pressure in arteries varies during the cardiac cycle. It is highest when the heart contracts and lowest when heart relaxes. The variation in pressure produces a pulse, which can be felt in different areas of the body, such as the radial pulse. Arterioles have the greatest collective influence on both local blood flow and on overall blood pressure. They are the primary "adjustable nozzles" in the blood system, across which the greatest pressure drop occurs. The combination of heart output (cardiac output) and systemic vascular resistance, which refers to the collective resistance of all of the body's arterioles, are the principal determinants of arterial blood pressure at any given moment.

Arteries have the highest pressure and have narrow lumen diameter. It consists of three tunics: Tunica media, intima, and external.

Systemic arteries are the arteries (including the peripheral arteries), of the systemic circulation, which is the part of the cardiovascular system that carries oxygenated blood away from the heart, to the body, and returns deoxygenated blood back to the heart. Systemic arteries can be subdivided into two types—muscular and elastic—according to the relative compositions of elastic and muscle tissue in their tunica media as well as their size and the makeup of the internal and external elastic lamina. The larger arteries (>10 mm diameter) are generally elastic and the smaller ones (0.1–10 mm) tend to be muscular. Systemic arteries deliver blood to the arterioles, and then to the capillaries, where nutrients and gases are exchanged.

After traveling from the aorta, blood travels through peripheral arteries into smaller arteries called arterioles, and eventually to capillaries. Arterioles help in regulating blood pressure by the variable contraction of the smooth muscle of their walls, and deliver blood to the capillaries.

Aorta Edit

The aorta is the root systemic artery (i.e., main artery). In humans, it receives blood directly from the left ventricle of the heart via the aortic valve. As the aorta branches and these arteries branch, in turn, they become successively smaller in diameter, down to the arterioles. The arterioles supply capillaries, which in turn empty into venules. The first branches off of the aorta are the coronary arteries, which supply blood to the heart muscle itself. These follow by the branches of the aortic arch, namely the brachiocephalic artery, the left common carotid, and the left subclavian arteries.

Capillaries Edit

The capillaries are the smallest of the blood vessels and are part of the microcirculation. The microvessels have a width of a single cell in diameter to aid in the fast and easy diffusion of gases, sugars and nutrients to surrounding tissues. Capillaries have no smooth muscle surrounding them and have a diameter less than that of red blood cells a red blood cell is typically 7 micrometers outside diameter, capillaries typically 5 micrometers inside diameter. The red blood cells must distort in order to pass through the capillaries.

These small diameters of the capillaries provide a relatively large surface area for the exchange of gases and nutrients.

Systemic arterial pressures are generated by the forceful contractions of the heart's left ventricle. High blood pressure is a factor in causing arterial damage. Healthy resting arterial pressures are relatively low, mean systemic pressures typically being under 100 mmHg (1.9 psi 13 kPa) above surrounding atmospheric pressure (about 760 mmHg, 14.7 psi, 101 kPa at sea level). To withstand and adapt to the pressures within, arteries are surrounded by varying thicknesses of smooth muscle which have extensive elastic and inelastic connective tissues. The pulse pressure, being the difference between systolic and diastolic pressure, is determined primarily by the amount of blood ejected by each heart beat, stroke volume, versus the volume and elasticity of the major arteries.

A blood squirt also known as an arterial gush is the effect when an artery is cut due to the higher arterial pressures. Blood is spurted out at a rapid, intermittent rate, that coincides with the heartbeat. The amount of blood loss can be copious, can occur very rapidly, and be life-threatening. [6]

Over time, factors such as elevated arterial blood sugar (particularly as seen in diabetes mellitus), lipoprotein, cholesterol, high blood pressure, stress and smoking, are all implicated in damaging both the endothelium and walls of the arteries, resulting in atherosclerosis. Atherosclerosis is a disease marked by the hardening of arteries. This is caused by an atheroma or plaque in the artery wall and is a build-up of cell debris, that contain lipids, (cholesterol and fatty acids), calcium [7] [8] and a variable amount of fibrous connective tissue.

Accidental intraarterial injection either iatrogenically or through recreational drug use can cause symptoms such as intense pain, paresthesia and necrosis. It usually causes permanent damage to the limb often amputation is necessary. [9]

Among the Ancient Greeks, the arteries were considered to be "air holders" that were responsible for the transport of air to the tissues and were connected to the trachea. This was as a result of finding the arteries of cadavers devoid of blood.

In medieval times, it was recognized that arteries carried a fluid, called "spiritual blood" or "vital spirits", considered to be different from the contents of the veins. This theory went back to Galen. In the late medieval period, the trachea, [10] and ligaments were also called "arteries". [11]

William Harvey described and popularized the modern concept of the circulatory system and the roles of arteries and veins in the 17th century.

Alexis Carrel at the beginning of the 20th century first described the technique for vascular suturing and anastomosis and successfully performed many organ transplantations in animals he thus actually opened the way to modern vascular surgery that was previously limited to vessels’ permanent ligation.

Theodor Kocher reported that atherosclerosis often developed in patients who had undergone a thyroidectomy and suggested that hypothyroidism favors atherosclerosis, which was, in 1900s autopsies, seen more frequently in iodine-deficient Austrians compared to Icelanders, who are not deficient in iodine. Turner reported the effectiveness of iodide and dried extracts of thyroid in the prevention of atherosclerosis in laboratory rabbits. [12] [ citation needed ]


Cross-sectional area of arteries and capillaries?

I'd be grateful if anyone might help me to understand something I'm confused about regarding the cross-sectional area of blood vessels. I've read three facts about this topic in three different books.
First I read that the total cross-sectional area of the vessels increases between the aorta and the capillaries and that this causes an increased frictional resistance between the blood and the vessel wall, decreasing the rate of blood flow. However, in one of the other books, I read that capillaries are very narrow so that they can permeate tissues and so that red blood cells are squeezed flat against their sides to reduce the diffusion path for the exchange of materials. Finally, I read, in the third book, that hydrostatic pressure occurs at the arterial end of the capillaries due to blood that is pumped from the heart having passed through "arteries, even narrower arterioles, and even narrower capillaries" (I've written this in quote marks as it is exactly what the book says).
What I can't understand is how the total cross-sectional area can increase between the arteries and the capillaries (as stated in book 1) and yet arterioles and capillaries are said to be increasingly narrower than arteries, in order to create hydrostatic pressure of blood that passes through them, and so that the capillaries can permeate tissue and also be narrow enough for red blood cells to be squeezed flat against their sides?
How does this work? When book 1 describes the total cross-sectional area of vessels as increasing, does it perhaps not refer to the lumens of these vessels, which in fact actually get narrower?
I'm really confused!

If anyone could clear this up for me and explain I'd be so appreciative!

Thank you!

Not what you're looking for? Try&hellip

(Original post by Ggdf)
Hi there,

I'd be grateful if anyone might help me to understand something I'm confused about regarding the cross-sectional area of blood vessels. I've read three facts about this topic in three different books.
First I read that the total cross-sectional area of the vessels increases between the aorta and the capillaries and that this causes an increased frictional resistance between the blood and the vessel wall, decreasing the rate of blood flow. However, in one of the other books, I read that capillaries are very narrow so that they can permeate tissues and so that red blood cells are squeezed flat against their sides to reduce the diffusion path for the exchange of materials. Finally, I read, in the third book, that hydrostatic pressure occurs at the arterial end of the capillaries due to blood that is pumped from the heart having passed through "arteries, even narrower arterioles, and even narrower capillaries" (I've written this in quote marks as it is exactly what the book says).
What I can't understand is how the total cross-sectional area can increase between the arteries and the capillaries (as stated in book 1) and yet arterioles and capillaries are said to be increasingly narrower than arteries, in order to create hydrostatic pressure of blood that passes through them, and so that the capillaries can permeate tissue and also be narrow enough for red blood cells to be squeezed flat against their sides?
How does this work? When book 1 describes the total cross-sectional area of vessels as increasing, does it perhaps not refer to the lumens of these vessels, which in fact actually get narrower?
I'm really confused!

If anyone could clear this up for me and explain I'd be so appreciative!

Thank you!

Well, think of it like this.

Thick --> Narrower --> Narrowest.

Arteries--> Arterioles --> Capillaries. [Note: There are different types of Arteries with different functions]

So you'd want the arteries to be the largest in diameter. Arterioles main role is regulating resistance, the friction between walls and the blood causes resistance and this resistance can increase and decrease dependant on various factors. For instance, contraction of smooth muscle causes vasoconstriction and restricts blood flow, similarly decrease in constriction decreases resistance and allows blood flow.

Capillaries are very very thin, and often haem- group has to fold it self to fit through the lumen, so you can imagine how thin it is, it's got a huge branch of network and hence a huge surface area.

Does that clear a few things up? I didn't want to write too much, as well, honestly, I can't be arsed. :-D


Arteries

An artery is a blood vessel that conducts blood away from the heart. All arteries have relatively thick walls that can withstand the high pressure of blood ejected from the heart. However, those close to the heart have the thickest walls, containing a high percentage of elastic fibers in all three of their tunics. This type of artery is known as an elastic artery (Figure 20.1.3). Vessels larger than 10 mm in diameter, such as the aorta, pulmonary trunk, common carotid, common iliac and subclavian arteries are typically elastic. Their abundant elastic fibers allow them to expand, as blood pumped from the ventricles passes through them, and then to recoil after the surge has passed. If artery walls were rigid and unable to expand and recoil, their resistance to blood flow would greatly increase and blood pressure would rise to even higher levels, which would in turn require the heart to pump harder to increase the volume of blood expelled by each pump (the stroke volume) and maintain adequate pressure and flow. Artery walls would have to become even thicker in response to this increased pressure. The elastic recoil of the vascular wall helps to maintain the pressure gradient that drives the blood through the arterial system. Between beats, when the heart is relaxed, diastolic pressure is provided by this elastic recoil. An elastic artery is also known as a conducting artery, because the large diameter of the lumen enables it to accept a large volume of blood from the heart and conduct it to smaller branches.

Figure 20.1.3 – Types of Arteries and Arterioles: Comparison of the walls of an elastic artery, a muscular artery, and an arteriole is shown. In terms of scale, the diameter of an arteriole is measured in micrometers compared to millimeters for elastic and muscular arteries.

Farther from the heart, where the surge of blood has dampened, the percentage of elastic fibers in an artery’s tunica intima decreases and the amount of smooth muscle in its tunica media increases. The artery at this point is described as a muscular artery also called a distributing artery because the relatively thick tunica media allows precise control of blood vessel diameter to control blood flow to different areas or organs . The diameter of muscular arteries typically ranges from 0.1 mm to 10 mm. Their thick tunica media allows muscular arteries to play a leading role in vasoconstriction. In contrast, their decreased quantity of elastic fibers limits their ability to expand. Fortunately, because the blood pressure has eased by the time it reaches these more distant vessels, elasticity has become less important.

Notice that although the distinctions between elastic and muscular arteries are important, there is no “line of demarcation” where an elastic artery suddenly becomes muscular. Rather, there is a gradual transition as the vascular tree repeatedly branches. In turn, muscular arteries branch to distribute blood to the vast network of arterioles.


In Anatomy, what is a Lumen? (with pictures)

Lumina are the spaces inside of tubular-shaped structures within the body. For example, the "open cavity" through which food travels down the esophagus to the stomach is a lumen. A lumen in anatomy can also refer to an aperture or an opening within a fixed structure, such as the circular hole in a vertebral bone through which the spinal cord courses.

One of the largest lumina in anatomy is the open space within the aorta, which is the largest vessel of the body. Blood flows from the left side of the heart through the aorta to the rest of the body. Tears in the aorta can cause serious and even life-threatening conditions. For instance, a small tear into the aorta's tunica intima, the innermost tissue layer of the blood vessel, can result in a collection of blood between the wall tissue layers called an aneurysm. An aneurysm can increase in size until either it blocks off the entire lumen of the vessel or can rupture open. The rupturing of the aorta, known as aortic dissection, can result in death.

Another example of a massive lumen is the foramen magnum, the largest aperture at the base of the skull. This bony hole is the anatomical demarcation of where the brain stem becomes the spinal cord. This is an important structure through which the transmission of nerve impulses to the body occurs. Any major swelling or increases in pressure within the skull cavity can displace the brain downward through the foramen magnum, resulting in death. This condition is known as the Arnold-Chiari malformation.

Medium-sized lumina can be represented by open cavities within the esophagus, the small intestine, the large intestine and the colon. The stomach would not normally be considered a lumen due to the bulbous shape of the organ, but technically, due to the passageway or channel-like nature of it, one could call the open space within it a lumen. The transmission of nutrients passes through the walls of the gastrointestinal tract. Perforations within this lumen can result in the need for emergency surgery.

Smaller examples of lumina include ducts and channels traveling between organs. A prime specimen of this group is the Cystic duct, which courses from the gallbladder, an organ that collects bile, to the bile duct, which empties into the duodenum at small opening in the duodenum's wall called the major duodenal papilla. This lumen allows for the passage of bile from the gallbladder to the intestines in order to help with the digestion of food.

Tiny lumina make up the majority of the lumen structures within the body. This group of lumina include the open spaces within anatomical tubes, such as arteries and veins, where blood can pass from one area of the body to the next. The tiniest of these lumina can be found in the kidney. Lumina of this size make up the glomeruli apparatuses, the extraordinarily tiny blood vessels that allow for the filtration of sodium, water and ammonia from the blood to form urine.


Structure and Function of Blood Vessels

Blood is carried through the body via blood vessels. An artery is a blood vessel that carries blood away from the heart, where it branches into ever-smaller vessels. Eventually, the smallest arteries, vessels called arterioles, further branch into tiny capillaries, where nutrients and wastes are exchanged, and then combine with other vessels that exit capillaries to form venules, small blood vessels that carry blood to a vein, a larger blood vessel that returns blood to the heart.

Arteries and veins transport blood in two distinct circuits: the systemic circuit and the pulmonary circuit ((Figure)). Systemic arteries provide blood rich in oxygen to the body’s tissues. The blood returned to the heart through systemic veins has less oxygen, since much of the oxygen carried by the arteries has been delivered to the cells. In contrast, in the pulmonary circuit, arteries carry blood low in oxygen exclusively to the lungs for gas exchange. Pulmonary veins then return freshly oxygenated blood from the lungs to the heart to be pumped back out into systemic circulation. Although arteries and veins differ structurally and functionally, they share certain features.

Shared Structures

Different types of blood vessels vary slightly in their structures, but they share the same general features. Arteries and arterioles have thicker walls than veins and venules because they are closer to the heart and receive blood that is surging at a far greater pressure ((Figure)). Each type of vessel has a lumen —a hollow passageway through which blood flows. Arteries have smaller lumens than veins, a characteristic that helps to maintain the pressure of blood moving through the system. Together, their thicker walls and smaller diameters give arterial lumens a more rounded appearance in cross section than the lumens of veins.

By the time blood has passed through capillaries and entered venules, the pressure initially exerted upon it by heart contractions has diminished. In other words, in comparison to arteries, venules and veins withstand a much lower pressure from the blood that flows through them. Their walls are considerably thinner and their lumens are correspondingly larger in diameter, allowing more blood to flow with less vessel resistance. In addition, many veins of the body, particularly those of the limbs, contain valves that assist the unidirectional flow of blood toward the heart. This is critical because blood flow becomes sluggish in the extremities, as a result of the lower pressure and the effects of gravity.

The walls of arteries and veins are largely composed of living cells and their products (including collagenous and elastic fibers) the cells require nourishment and produce waste. Since blood passes through the larger vessels relatively quickly, there is limited opportunity for blood in the lumen of the vessel to provide nourishment to or remove waste from the vessel’s cells. Further, the walls of the larger vessels are too thick for nutrients to diffuse through to all of the cells. Larger arteries and veins contain small blood vessels within their walls known as the vasa vasorum —literally “vessels of the vessel”—to provide them with this critical exchange. Since the pressure within arteries is relatively high, the vasa vasorum must function in the outer layers of the vessel (see (Figure)) or the pressure exerted by the blood passing through the vessel would collapse it, preventing any exchange from occurring. The lower pressure within veins allows the vasa vasorum to be located closer to the lumen. The restriction of the vasa vasorum to the outer layers of arteries is thought to be one reason that arterial diseases are more common than venous diseases, since its location makes it more difficult to nourish the cells of the arteries and remove waste products. There are also minute nerves within the walls of both types of vessels that control the contraction and dilation of smooth muscle. These minute nerves are known as the nervi vasorum.

Both arteries and veins have the same three distinct tissue layers, called tunics (from the Latin term tunica), for the garments first worn by ancient Romans the term tunic is also used for some modern garments. From the most interior layer to the outer, these tunics are the tunica intima, the tunica media, and the tunica externa (see (Figure)). (Figure) compares and contrasts the tunics of the arteries and veins.

Comparison of Tunics in Arteries and Veins
Arteries Veins
General appearance Thick walls with small lumens
Generally appear rounded
Thin walls with large lumens
Generally appear flattened
Tunica intima Endothelium usually appears wavy due to constriction of smooth muscle
Internal elastic membrane present in larger vessels
Endothelium appears smooth
Internal elastic membrane absent
Tunica media Normally the thickest layer in arteries
Smooth muscle cells and elastic fibers predominate (the proportions of these vary with distance from the heart)
External elastic membrane present in larger vessels
Normally thinner than the tunica externa
Smooth muscle cells and collagenous fibers predominate
Nervi vasorum and vasa vasorum present
External elastic membrane absent
Tunica externa Normally thinner than the tunica media in all but the largest arteries
Collagenous and elastic fibers
Nervi vasorum and vasa vasorum present
Normally the thickest layer in veins
Collagenous and smooth fibers predominate
Some smooth muscle fibers
Nervi vasorum and vasa vasorum present

Tunica Intima

The tunica intima (also called the tunica interna) is composed of epithelial and connective tissue layers. Lining the tunica intima is the specialized simple squamous epithelium called the endothelium, which is continuous throughout the entire vascular system, including the lining of the chambers of the heart. Damage to this endothelial lining and exposure of blood to the collagenous fibers beneath is one of the primary causes of clot formation. Until recently, the endothelium was viewed simply as the boundary between the blood in the lumen and the walls of the vessels. Recent studies, however, have shown that it is physiologically critical to such activities as helping to regulate capillary exchange and altering blood flow. The endothelium releases local chemicals called endothelins that can constrict the smooth muscle within the walls of the vessel to increase blood pressure. Uncompensated overproduction of endothelins may contribute to hypertension (high blood pressure) and cardiovascular disease.

Next to the endothelium is the basement membrane, or basal lamina, that effectively binds the endothelium to the connective tissue. The basement membrane provides strength while maintaining flexibility, and it is permeable, allowing materials to pass through it. The thin outer layer of the tunica intima contains a small amount of areolar connective tissue that consists primarily of elastic fibers to provide the vessel with additional flexibility it also contains some collagenous fibers to provide additional strength.

In larger arteries, there is also a thick, distinct layer of elastic fibers known as the internal elastic membrane (also called the internal elastic lamina) at the boundary with the tunica media. Like the other components of the tunica intima, the internal elastic membrane provides structure while allowing the vessel to stretch. It is permeated with small openings that allow exchange of materials between the tunics. The internal elastic membrane is not apparent in veins. In addition, many veins, particularly in the lower limbs, contain valves formed by sections of thickened endothelium that are reinforced with connective tissue, extending into the lumen.

Under the microscope, the lumen and the entire tunica intima of a vein will appear smooth, whereas those of an artery will normally appear wavy because of the partial constriction of the smooth muscle in the tunica media, the next layer of blood vessel walls.

Tunica Media

The tunica media is the substantial middle layer of the vessel wall (see (Figure)). It is generally the thickest layer in arteries, and it is much thicker in arteries than it is in veins. The tunica media consists of layers of smooth muscle supported by connective tissue that is primarily made up of elastic fibers, most of which are arranged in circular sheets. Toward the outer portion of the tunic, there are also layers of longitudinal muscle. Contraction and relaxation of the circular muscles decrease and increase the diameter of the vessel lumen, respectively. Specifically in arteries, vasoconstriction decreases blood flow as the smooth muscle in the walls of the tunica media contracts, making the lumen narrower and increasing blood pressure. Similarly, vasodilation increases blood flow as the smooth muscle relaxes, allowing the lumen to widen and blood pressure to drop. Both vasoconstriction and vasodilation are regulated in part by small vascular nerves, known as nervi vasorum , or “nerves of the vessel,” that run within the walls of blood vessels. These are generally all sympathetic fibers, although some trigger vasodilation and others induce vasoconstriction, depending upon the nature of the neurotransmitter and receptors located on the target cell. Parasympathetic stimulation does trigger vasodilation as well as erection during sexual arousal in the external genitalia of both sexes. Nervous control over vessels tends to be more generalized than the specific targeting of individual blood vessels. Local controls, discussed later, account for this phenomenon. (Seek additional content for more information on these dynamic aspects of the autonomic nervous system.) Hormones and local chemicals also control blood vessels. Together, these neural and chemical mechanisms reduce or increase blood flow in response to changing body conditions, from exercise to hydration. Regulation of both blood flow and blood pressure is discussed in detail later in this chapter.

The smooth muscle layers of the tunica media are supported by a framework of collagenous fibers that also binds the tunica media to the inner and outer tunics. Along with the collagenous fibers are large numbers of elastic fibers that appear as wavy lines in prepared slides. Separating the tunica media from the outer tunica externa in larger arteries is the external elastic membrane (also called the external elastic lamina), which also appears wavy in slides. This structure is not usually seen in smaller arteries, nor is it seen in veins.

Tunica Externa

The outer tunic, the tunica externa (also called the tunica adventitia), is a substantial sheath of connective tissue composed primarily of collagenous fibers. Some bands of elastic fibers are found here as well. The tunica externa in veins also contains groups of smooth muscle fibers. This is normally the thickest tunic in veins and may be thicker than the tunica media in some larger arteries. The outer layers of the tunica externa are not distinct but rather blend with the surrounding connective tissue outside the vessel, helping to hold the vessel in relative position. If you are able to palpate some of the superficial veins on your upper limbs and try to move them, you will find that the tunica externa prevents this. If the tunica externa did not hold the vessel in place, any movement would likely result in disruption of blood flow.

Arteries

An artery is a blood vessel that conducts blood away from the heart. All arteries have relatively thick walls that can withstand the high pressure of blood ejected from the heart. However, those close to the heart have the thickest walls, containing a high percentage of elastic fibers in all three of their tunics. This type of artery is known as an elastic artery ((Figure)). Vessels larger than 10 mm in diameter are typically elastic. Their abundant elastic fibers allow them to expand, as blood pumped from the ventricles passes through them, and then to recoil after the surge has passed. If artery walls were rigid and unable to expand and recoil, their resistance to blood flow would greatly increase and blood pressure would rise to even higher levels, which would in turn require the heart to pump harder to increase the volume of blood expelled by each pump (the stroke volume) and maintain adequate pressure and flow. Artery walls would have to become even thicker in response to this increased pressure. The elastic recoil of the vascular wall helps to maintain the pressure gradient that drives the blood through the arterial system. An elastic artery is also known as a conducting artery, because the large diameter of the lumen enables it to accept a large volume of blood from the heart and conduct it to smaller branches.

Farther from the heart, where the surge of blood has dampened, the percentage of elastic fibers in an artery’s tunica intima decreases and the amount of smooth muscle in its tunica media increases. The artery at this point is described as a muscular artery . The diameter of muscular arteries typically ranges from 0.1 mm to 10 mm. Their thick tunica media allows muscular arteries to play a leading role in vasoconstriction. In contrast, their decreased quantity of elastic fibers limits their ability to expand. Fortunately, because the blood pressure has eased by the time it reaches these more distant vessels, elasticity has become less important.

Notice that although the distinctions between elastic and muscular arteries are important, there is no “line of demarcation” where an elastic artery suddenly becomes muscular. Rather, there is a gradual transition as the vascular tree repeatedly branches. In turn, muscular arteries branch to distribute blood to the vast network of arterioles. For this reason, a muscular artery is also known as a distributing artery.

Arterioles

An arteriole is a very small artery that leads to a capillary. Arterioles have the same three tunics as the larger vessels, but the thickness of each is greatly diminished. The critical endothelial lining of the tunica intima is intact. The tunica media is restricted to one or two smooth muscle cell layers in thickness. The tunica externa remains but is very thin (see (Figure)).

With a lumen averaging 30 micrometers or less in diameter, arterioles are critical in slowing down—or resisting—blood flow and, thus, causing a substantial drop in blood pressure. Because of this, you may see them referred to as resistance vessels. The muscle fibers in arterioles are normally slightly contracted, causing arterioles to maintain a consistent muscle tone—in this case referred to as vascular tone—in a similar manner to the muscular tone of skeletal muscle. In reality, all blood vessels exhibit vascular tone due to the partial contraction of smooth muscle. The importance of the arterioles is that they will be the primary site of both resistance and regulation of blood pressure. The precise diameter of the lumen of an arteriole at any given moment is determined by neural and chemical controls, and vasoconstriction and vasodilation in the arterioles are the primary mechanisms for distribution of blood flow.

Capillaries

A capillary is a microscopic channel that supplies blood to the tissues themselves, a process called perfusion . Exchange of gases and other substances occurs in the capillaries between the blood and the surrounding cells and their tissue fluid (interstitial fluid). The diameter of a capillary lumen ranges from 5–10 micrometers the smallest are just barely wide enough for an erythrocyte to squeeze through. Flow through capillaries is often described as microcirculation .

The wall of a capillary consists of the endothelial layer surrounded by a basement membrane with occasional smooth muscle fibers. There is some variation in wall structure: In a large capillary, several endothelial cells bordering each other may line the lumen in a small capillary, there may be only a single cell layer that wraps around to contact itself.

For capillaries to function, their walls must be leaky, allowing substances to pass through. There are three major types of capillaries, which differ according to their degree of “leakiness:” continuous, fenestrated, and sinusoid capillaries ((Figure)).

Continuous Capillaries

The most common type of capillary, the continuous capillary , is found in almost all vascularized tissues. Continuous capillaries are characterized by a complete endothelial lining with tight junctions between endothelial cells. Although a tight junction is usually impermeable and only allows for the passage of water and ions, they are often incomplete in capillaries, leaving intercellular clefts that allow for exchange of water and other very small molecules between the blood plasma and the interstitial fluid. Substances that can pass between cells include metabolic products, such as glucose, water, and small hydrophobic molecules like gases and hormones, as well as various leukocytes. Continuous capillaries not associated with the brain are rich in transport vesicles, contributing to either endocytosis or exocytosis. Those in the brain are part of the blood-brain barrier. Here, there are tight junctions and no intercellular clefts, plus a thick basement membrane and astrocyte extensions called end feet these structures combine to prevent the movement of nearly all substances.

Fenestrated Capillaries

A fenestrated capillary is one that has pores (or fenestrations) in addition to tight junctions in the endothelial lining. These make the capillary permeable to larger molecules. The number of fenestrations and their degree of permeability vary, however, according to their location. Fenestrated capillaries are common in the small intestine, which is the primary site of nutrient absorption, as well as in the kidneys, which filter the blood. They are also found in the choroid plexus of the brain and many endocrine structures, including the hypothalamus, pituitary, pineal, and thyroid glands.

Sinusoid Capillaries

A sinusoid capillary (or sinusoid) is the least common type of capillary. Sinusoid capillaries are flattened, and they have extensive intercellular gaps and incomplete basement membranes, in addition to intercellular clefts and fenestrations. This gives them an appearance not unlike Swiss cheese. These very large openings allow for the passage of the largest molecules, including plasma proteins and even cells. Blood flow through sinusoids is very slow, allowing more time for exchange of gases, nutrients, and wastes. Sinusoids are found in the liver and spleen, bone marrow, lymph nodes (where they carry lymph, not blood), and many endocrine glands including the pituitary and adrenal glands. Without these specialized capillaries, these organs would not be able to provide their myriad of functions. For example, when bone marrow forms new blood cells, the cells must enter the blood supply and can only do so through the large openings of a sinusoid capillary they cannot pass through the small openings of continuous or fenestrated capillaries. The liver also requires extensive specialized sinusoid capillaries in order to process the materials brought to it by the hepatic portal vein from both the digestive tract and spleen, and to release plasma proteins into circulation.

Metarterioles and Capillary Beds

A metarteriole is a type of vessel that has structural characteristics of both an arteriole and a capillary. Slightly larger than the typical capillary, the smooth muscle of the tunica media of the metarteriole is not continuous but forms rings of smooth muscle (sphincters) prior to the entrance to the capillaries. Each metarteriole arises from a terminal arteriole and branches to supply blood to a capillary bed that may consist of 10–100 capillaries.

The precapillary sphincters , circular smooth muscle cells that surround the capillary at its origin with the metarteriole, tightly regulate the flow of blood from a metarteriole to the capillaries it supplies. Their function is critical: If all of the capillary beds in the body were to open simultaneously, they would collectively hold every drop of blood in the body and there would be none in the arteries, arterioles, venules, veins, or the heart itself. Normally, the precapillary sphincters are closed. When the surrounding tissues need oxygen and have excess waste products, the precapillary sphincters open, allowing blood to flow through and exchange to occur before closing once more ((Figure)). If all of the precapillary sphincters in a capillary bed are closed, blood will flow from the metarteriole directly into a thoroughfare channel and then into the venous circulation, bypassing the capillary bed entirely. This creates what is known as a vascular shunt . In addition, an arteriovenous anastomosis may bypass the capillary bed and lead directly to the venous system.

Although you might expect blood flow through a capillary bed to be smooth, in reality, it moves with an irregular, pulsating flow. This pattern is called vasomotion and is regulated by chemical signals that are triggered in response to changes in internal conditions, such as oxygen, carbon dioxide, hydrogen ion, and lactic acid levels. For example, during strenuous exercise when oxygen levels decrease and carbon dioxide, hydrogen ion, and lactic acid levels all increase, the capillary beds in skeletal muscle are open, as they would be in the digestive system when nutrients are present in the digestive tract. During sleep or rest periods, vessels in both areas are largely closed they open only occasionally to allow oxygen and nutrient supplies to travel to the tissues to maintain basic life processes.

Venules

A venule is an extremely small vein, generally 8–100 micrometers in diameter. Postcapillary venules join multiple capillaries exiting from a capillary bed. Multiple venules join to form veins. The walls of venules consist of endothelium, a thin middle layer with a few muscle cells and elastic fibers, plus an outer layer of connective tissue fibers that constitute a very thin tunica externa ((Figure)). Venules as well as capillaries are the primary sites of emigration or diapedesis, in which the white blood cells adhere to the endothelial lining of the vessels and then squeeze through adjacent cells to enter the tissue fluid.

Veins

A vein is a blood vessel that conducts blood toward the heart. Compared to arteries, veins are thin-walled vessels with large and irregular lumens (see (Figure)). Because they are low-pressure vessels, larger veins are commonly equipped with valves that promote the unidirectional flow of blood toward the heart and prevent backflow toward the capillaries caused by the inherent low blood pressure in veins as well as the pull of gravity. (Figure) compares the features of arteries and veins.

Comparison of Arteries and Veins
Arteries Veins
Direction of blood flow Conducts blood away from the heart Conducts blood toward the heart
General appearance Rounded Irregular, often collapsed
Pressure High Low
Wall thickness Thick Thin
Relative oxygen concentration Higher in systemic arteries
Lower in pulmonary arteries
Lower in systemic veins
Higher in pulmonary veins
Valves Not present Present most commonly in limbs and in veins inferior to the heart

Cardiovascular System: Edema and Varicose Veins Despite the presence of valves and the contributions of other anatomical and physiological adaptations we will cover shortly, over the course of a day, some blood will inevitably pool, especially in the lower limbs, due to the pull of gravity. Any blood that accumulates in a vein will increase the pressure within it, which can then be reflected back into the smaller veins, venules, and eventually even the capillaries. Increased pressure will promote the flow of fluids out of the capillaries and into the interstitial fluid. The presence of excess tissue fluid around the cells leads to a condition called edema.

Most people experience a daily accumulation of tissue fluid, especially if they spend much of their work life on their feet (like most health professionals). However, clinical edema goes beyond normal swelling and requires medical treatment. Edema has many potential causes, including hypertension and heart failure, severe protein deficiency, renal failure, and many others. In order to treat edema, which is a sign rather than a discrete disorder, the underlying cause must be diagnosed and alleviated.

Edema may be accompanied by varicose veins, especially in the superficial veins of the legs ((Figure)). This disorder arises when defective valves allow blood to accumulate within the veins, causing them to distend, twist, and become visible on the surface of the integument. Varicose veins may occur in both sexes, but are more common in women and are often related to pregnancy. More than simple cosmetic blemishes, varicose veins are often painful and sometimes itchy or throbbing. Without treatment, they tend to grow worse over time. The use of support hose, as well as elevating the feet and legs whenever possible, may be helpful in alleviating this condition. Laser surgery and interventional radiologic procedures can reduce the size and severity of varicose veins. Severe cases may require conventional surgery to remove the damaged vessels. As there are typically redundant circulation patterns, that is, anastomoses, for the smaller and more superficial veins, removal does not typically impair the circulation. There is evidence that patients with varicose veins suffer a greater risk of developing a thrombus or clot.

Veins as Blood Reservoirs

In addition to their primary function of returning blood to the heart, veins may be considered blood reservoirs, since systemic veins contain approximately 64 percent of the blood volume at any given time ((Figure)). Their ability to hold this much blood is due to their high capacitance , that is, their capacity to distend (expand) readily to store a high volume of blood, even at a low pressure. The large lumens and relatively thin walls of veins make them far more distensible than arteries thus, they are said to be capacitance vessels .

When blood flow needs to be redistributed to other portions of the body, the vasomotor center located in the medulla oblongata sends sympathetic stimulation to the smooth muscles in the walls of the veins, causing constriction—or in this case, venoconstriction. Less dramatic than the vasoconstriction seen in smaller arteries and arterioles, venoconstriction may be likened to a “stiffening” of the vessel wall. This increases pressure on the blood within the veins, speeding its return to the heart. As you will note in (Figure), approximately 21 percent of the venous blood is located in venous networks within the liver, bone marrow, and integument. This volume of blood is referred to as venous reserve . Through venoconstriction, this “reserve” volume of blood can get back to the heart more quickly for redistribution to other parts of the circulation.

Vascular Surgeons and Technicians Vascular surgery is a specialty in which the physician deals primarily with diseases of the vascular portion of the cardiovascular system. This includes repair and replacement of diseased or damaged vessels, removal of plaque from vessels, minimally invasive procedures including the insertion of venous catheters, and traditional surgery. Following completion of medical school, the physician generally completes a 5-year surgical residency followed by an additional 1 to 2 years of vascular specialty training. In the United States, most vascular surgeons are members of the Society of Vascular Surgery.

Vascular technicians are specialists in imaging technologies that provide information on the health of the vascular system. They may also assist physicians in treating disorders involving the arteries and veins. This profession often overlaps with cardiovascular technology, which would also include treatments involving the heart. Although recognized by the American Medical Association, there are currently no licensing requirements for vascular technicians, and licensing is voluntary. Vascular technicians typically have an Associate’s degree or certificate, involving 18 months to 2 years of training. The United States Bureau of Labor projects this profession to grow by 29 percent from 2010 to 2020.

Visit this site to learn more about vascular surgery.

Visit this site to learn more about vascular technicians.

Chapter Review

Blood pumped by the heart flows through a series of vessels known as arteries, arterioles, capillaries, venules, and veins before returning to the heart. Arteries transport blood away from the heart and branch into smaller vessels, forming arterioles. Arterioles distribute blood to capillary beds, the sites of exchange with the body tissues. Capillaries lead back to small vessels known as venules that flow into the larger veins and eventually back to the heart.

The arterial system is a relatively high-pressure system, so arteries have thick walls that appear round in cross section. The venous system is a lower-pressure system, containing veins that have larger lumens and thinner walls. They often appear flattened. Arteries, arterioles, venules, and veins are composed of three tunics known as the tunica intima, tunica media, and tunica externa. Capillaries have only a tunica intima layer. The tunica intima is a thin layer composed of a simple squamous epithelium known as endothelium and a small amount of connective tissue. The tunica media is a thicker area composed of variable amounts of smooth muscle and connective tissue. It is the thickest layer in all but the largest arteries. The tunica externa is primarily a layer of connective tissue, although in veins, it also contains some smooth muscle. Blood flow through vessels can be dramatically influenced by vasoconstriction and vasodilation in their walls.


Why do arteries have a small lumen? - Biology

Capillaries are small, normally around 3-4µm, but some capillaries can be 30-40 µm in diameter. The largest capillaries are found in the liver. (capillar comes from the greek for hairlike).

Capillaries connect arterioles to venules. They allow the exchange of nutrients and wastes between the blood and the tissue cells, together with the interstitital fluid. This exchange occurs by passive diffusion and by pinocytosis which means 'cell drinking'. Pinocytosis is used for proteins, and some lipids. Also, importantly, white blood cells can move through intercellular junctions, into the surrounding tissue to repair damage, and fight infections. This route is also used by metastasising cancerous cells.

Capillaries have a single layer of flattened endothelial cells, as shown here in the diagram. There are no muscular or adventitial layers. The thinness of the capillaries helps efficient exchange between the lumen of the capillary and the surrounding tissue. Continuous capillaries often have pericytes associated with them. (perivascular cells - peri is greek for 'around') lie just underneath the endothelium of blood capillaries, and are a source of new fibroblasts.

There are three types of capillary:

  • continuous
  • fenestrated
  • discontinuous

Sinusoids, found in the liver can be continuous, fenestrated or discontinuous.

Continuous capillary

This image is an EM of a continuous type of capillary. Can you identify the two endothelial cells that are bound together by tight junctions. The nucleus of one cell bulges into the lumen of the capillary. The nucleus of the other cell cannot be seen.

This image is of a capillary in adipose tissue stained using H&E. The delicate capillary wall is supported by fine perivascular connective tissue. Note the single erythrocyte within the capillary's lumen.

Fenestrated capillaries

This H&E stained picture shows the convoluted mass of fenestrated capillaries found in a kidney glomerulus.

These are found in some tissues where there is extensive molecular exchange with the blood such as the small intestine, endocrine glands and the kidney. The 'fenestrations' are pores that will allow larger molecules though.

These capillaries are more permeable than continuous capillaries.

The transmission and scanning electron microscopes below show pores (fenestrae) in the capillary wall of the kidney glomeruli that are not resolved by the light microscope.

At high magnification, the fenestrations of the endothelial cell can be seen as 'gaps' next the the basement membrane (F) in the picture below.

The red arrows represent the 'podocytes' - foot processes from podocyte (epithelial) cells in the kidney glomerulus.

Discontinuous Capillaries

These are only found in the liver. They are formed between the endothelial cells of the sinusoids and hepatocyte cells (Cell 1 and 2 in the picture). The hepatocytes have lots of projections called microvilli that project into the space of Disse. This produces large clefts or spaces between the two layers of cells, that allows proteins, or even blood cells to pass through.

Sinusoids are a special type of capillary that have a wide diameter. These are found in the liver, spleen, lymph nodes, bone marrow and some endocrine glands. They can be continuous, fenestrated, or discontinuous.

Histology Guide © Faculty of Biological Sciences, University of Leeds | Credits


Arteries and arterioles

The arteries, which are strong, flexible, and resilient, carry blood away from the heart and bear the highest blood pressures. Because arteries are elastic, they narrow (recoil) passively when the heart is relaxing between beats and thus help maintain blood pressure. The arteries branch into smaller and smaller vessels, eventually becoming very small vessels called arterioles. Arteries and arterioles have muscular walls that can adjust their diameter to increase or decrease blood flow to a particular part of the body.